Maximal Sprinting for Middle/Long Distance Running

Ajamu Olaniyan
Sports performance engineer

It does not matter if I can reach a higher VO2max in 5 minutes when I have to cross the finish line in 102 s

- Vebjørn Rodal (800 m Olympic champion, 1996)

Tony Holler is WRONG!

Speed 101

Sprint training and development is not based on or guided by sport science (Haugen et al., 2020)

There is a lack of evidence-based research identifying best practices for speed development

A chasm exists between empirical knowledge of speed development and experiential knowledge of coaches (Waters et al., 2019)

Speed 101

Q12 What are your top training priorities for developing athletes? Rank in order of importance ($1=$ most important, 14 = least important)
Q13 What are your top training priorities for elite athletes? Rank in order of importance ($1=$ most important, 14 = least important)

Training Priority

Arm positioning
Bend Running
Block Starts
Endurance
Footwork
General strength conditioning
Aerobic Fitness
Max Velocity
Posture
Power
Reaction time
Skill specific conditioning

Speed Endurance

Strength

Other

Speed 101

Coaches

Developmental training priorities:

General strength conditioning
Posture
Footwork
Skill specific conditioning
Arm positioning

Coaches

Elite training priorities:
Maximum velocity/Skill specific
Maximum velocity
Skill specific conditioning
Power
Reaction time

Speed 101

Sport Mechanists

Developmental training

 priorities:Maximum velocity
Skill specific conditioning
Posture
General strength
conditioning
Arm positioning/Aerobic fitness

Sport Mechanists

Elite training priorities:
Maximum velocity
Maximum velocity
Posture
Power
General Strength/ Aerobic
Fitness/Strength

Dimensions of speed

Speed phases:

- Acceleration: 0-10 m
- Maximum velocity: 30-80 m
- Maximum velocity is also the fastest 10 m split in the maximum velocity phase
- Elite sprinters attain MV later in the phase
- Velocity maintenance: after maximum velocity has been attained

Maximum velocity

Maximal sprint speed (MSS)

- 40 m up to 60 m
- Total distance time and 10 m splits (if possible)

Speed 101

Speed reserve is an athlete's efficiency while sprinting. The faster the athlete, the less effort needs to be expended to maintain maximum velocity (Crick, T., 2013).

Speed 101

1. Sprinting = acceleration, maximum velocity (MV), deceleration
2. MV exists in a 10 m window
3. Sprinting (maximum velocity) takes place between 30-60 m
4. A 10 m fly with a 30 m fly start is an efficient means of measuring maximum velocity
5. If an athlete is not sprinting at $\geq 95 \%$ of $M \mathbf{V}$, it's not sprinting
6. Electronic timing is accurate and precise
7. Apples to apples = meters to meters
8. Sprinting $=$ Vertical application of maximal force in a downward direction
9. Low intensity training 48 hours before and after sprint efforts
10. Arms aren't as important as you think

Speed 101

Maximum velocity (MV) exists in a 10 m window

Speed 101

Sprinting (maximum velocity) takes place between $30-60 \mathrm{~m}$

Speed 101

If an athlete is not sprinting at $\geq 95 \%$ of MV, it's not sprinting
Sprinting intensity should be $\geq 95 \%$ of an athlete's maximum velocity for performance enhancement (Haugen, et al., 2020).

Key factors in running performance

Performance metrics:
Speed Reserve Ratio (SRR): MSS/MAS
Anaerobic Speed Reserve (ASR): MSS - MAS Maximal Aerobic Speed (MAS): 1,600 m (total distance time and 400 m splits) Maximal Sprinting Speed (MSS): 40 m (10 m split and total distance)

Speed reserve ratio (SRR)

Speed reserve ratio (SRR)

 Maximal sprint speed (MSS)/Maximal aerobic speed (MAS)
Aerobic/Anaerobic Contributions

800 m :
70/30\% or 60/40\%
1,500 m - Marathon:
75-85\%/15-25\%

Subgroups based on Speed Reserve Ratio (SSR)

400-800 m (speed): SRR: ≥ 1.58

800 m (specialist):
SRR: ≤ 1.57 to ≥ 1.47
$800 \mathrm{~m}-1,500 \mathrm{~m}$ (endurance):
SRR: ≤ 1.57 to ≥ 1.47
1,500 m - Marathon:
(Haugen et al., 2021; Sandford et al., 2019)

Anaerobic speed reserve (ASR)

Anaerobic speed reserve (ASR) Maximal sprint speed (MSS) - maximal aerobic speed (MAS)

Maximal aerobic speed

 Maximal aerobic speed (MAS) Any distance used to represent $\mathrm{VO}_{2 \max }$ - 400 m on up (XC: 5K)- Total distance time and splits (if possible)

Maximal sprint speed

Maximal sprint speed (MSS)

- 40 m up to 60 m
- Total distance time and 10 m splits (if possible)

Aerobic Contributions

- Middle distance
- 800 m: 65-75\%
- 1,500 m: 80-85\%
- Middle-long distance:
- 3,000 m: 85-90\%
- 5,000 m: 90-97\%
- 10,000 m: 97\%
- Long distance
- Half marathon: 98\%
- Marathon: 99.9\%

Billat (2001)

Aerobic Contributions

- $800 \mathrm{~m}:(60.3 \pm 9) \%$
- 1,500 m: $(77 \pm 7) \%$
- $3,000 \mathrm{~m}:(86 \pm 7) \%$

Duffield et al. (2005)

Aerobic Contributions

- $800 \mathrm{~m}:(66 \pm 4) \%$
- $1,500 \mathrm{~m}:(84 \pm 3) \%$

Spencer and Gastin (2001)

The role of maximal sprint speed in running performance

Assessing running speed helps determine race strategy, the quality of training programs, and provides insights to optimized training intensities and volumes in a training period

Riberio et al. (2020)

The role of maximal sprint speed in running performance

The ability to adapt and manage the acidification and development of a higher blood concentration of lactate without performance capacity diminishing is critical

Riberio et al. (2020)

The role of maximal sprint speed in running performance

A fast Maximal Sprinting Speed
(MSS)determines the proportion of ASR an athlete can work at and may influence high intensity training tolerance
(Sandford et al., 2019)

Maximum Velocity and Cross Country Performance

Athlete	MV	Race PR
A1	1.14	$18: 59.0$
A2	1.15	$18: 20.0$
A3	1.17	$18: 35.2$
A4	1.20	$22: 10.3$
A5	1.21	$19: 11.6$
A6	1.22	$18: 44.2$
A7	1.23	$18: 20.0$
A8	1.23	$18: 37.7$
A9	1.24	$18: 57.1$
A10	1.26	$18: 20.6$
A11	1.26	$21: 17.0$
A12	1.30	$20: 35.1$

Athlete	MV	Race PR
A13	1.30	$19: 43.5$
A14	1.31	$23: 46.5$
A15	1.33	$18: 38.1$
A16	1.35	$20: 10.8$
A17	1.40	$23: 43.7$
A18	1.42	$23: 53.5$
A19	1.42	$19: 42.9$
A20	1.44	$21: 40.0$
A21	1.56	$26: 39.9$
A22	1.61	$23: 00.0$
A23	1.75	$25: 55.7$
A24	1.83	$25: 37.1$

Maximum Velocity and Cross Country Performance

	Maximum Velocity (MV)		1,600 PR	MV	1,600 time	Speed Reserve Ratio (SRR)
Athlete	Max	Ave		MSS m/s	MAS m/s	$S R R=M S S / M A S$
A1	1.27	1.32	4:33	7.87	5.86	1.34
A2	1.18	1.22	5:00	8.47	5.33	1.59
A3	1.16	1.19				
A4	1.32	1.35				
A5	1.26	1.38				
A6	1.12	1.15	5:00	9.80	5.33	1.84
A7	1.36	1.40	5:22	8.26	4.97	1.66
A8	1.15	1.24	6:15	8.70	4.27	2.04
A9	1.30	1.36				
A10	1.22	1.23				
A11	1.42	1.48				
A12	1.76	1.81				

Maximum Velocity and Cross Country Performance

Thomas Breitbach	
MSS (MV in m/s)	
1.19	8.4
MAS (1,600)	
4:19	259
1,600 in m/s	6.18
SRR $=$ MSS/MAS	
	1.36
ASR = MSS-MAS	
	2.22

Maximum Velocity and Cross Country Performance

Ben Stricker						
	MV	200 m	400 m	800 m	1600 m	3,200
2022 Track				2:10.85		10:00.14
2023 Track	1.09	26.09	55.28	2:03.12	4:26.57	9:43.74
	MV	5,000				
2022 XC	1.20	16:18.9				
2023 XC	1.09	16:06.3				

Maximum Velocity Top Performances

	Athlete	Time	Sport
1	Gabriel Olsen	0.95	Track/Soccer
	AC Zylka		Track
	Alexander Maggit		Track
2	Aidan Lynch	1.00	Track
3	Jacob Lorbecki	1.01	Soccer/Baseball
4	Devin Frank	1.02	Track/Football
	Lily Strong		Track
	Desmond Wilson		Track
5	Max McQuide	1.03	Track
6	Matt Jelinski	1.04	Track
	A. Groskopf		Track/Football
	Kieran Schindler		Track
7	Jetta Mays	1.05	Track
	Sennet Siodlarz		Track/Football
8	Austin Villarreal	1.06	Track/Basketball
9	Nick Hansen	1.07	Football
10	Naomi Wilson	1.08	Track/Basketball
11	Andrew Kronenberg	1.09	Football
	Maia Mays		Track
	Maximum Velocity		
	10 m fly (30 m fly start)		

Maximum Velocity Top Performances

Maximum Velocity	Performance
Elite	$<.90$
Excellent	$.99-.90$
Very Good	$1.09-1.00$
Above Average	$1.19-1.10$
Average	$1.29-1.20$
Below Average	≥ 1.30
Created by Nat Senior and Ajamu Olaniyan (topflightone.com)	

Maximum Velocity Top Performances

Max Velocity for Optimal 100 m Performance (Min. values)

100m time	Max V (m/s)	Fastest 10m	Fly 30m (Fastest 30m segment)
9.40	12.55		2.41
9.50	12.50	0.80	2.42
9.58 WR (Men)	12.50	0.80	2.43
9.60	12.19	$0.80 / 0.81$	2.47
9.70	12.05	0.82	2.51
9.80	11.92	0.83	2.54
9.90	11.78	0.84	2.57
10.00	11.64	0.85	2.60
10.10	11.51	0.86	2.62
10.20	11.37	0.87	2.66
10.30	11.24	0.88	2.69
10.40	11.10	0.89	2.72
10.49 WR $($ Women	11.23	0.90	2.69
10.50	10.97	0.89	2.75
10.60	10.83	0.91	2.78
10.70	10.70	0.92	2.81
10.80	10.59	0.93	2.84
10.90	10.47	0.94	$2.87 / 2.90$
11.00	10.35	$0.95 / 0.96$	$2.90 / 2.94$
11.10	10.25	$0.96 / 0.97$	$2.94 / 2.96$
11.20	10.12	$0.97 / 0.98$	2.99
11.30	10.03	0.99	$2.99 / 3.02$
11.40	9.89	$0.99 / 1.00$	3.04
11.50	9.76	1.01	$3.08 / 3.11$
11.60	9.65	$1.02 / 1.03$	$3.11 / 3.14$
11.70	9.53	$1.03 / 1.04$	3.17
11.80	9.41	1.05	3.19
11.90	9.30	1.06	$3.23 / 3.26$
12.00	9.20	$1.07 / 1.08$	$3.26 / 3.30$
		$1.08 / 1.09$	

Created by Nat Senior of NSX Performance
 https://youtube.com/@nsxperform ance?si=DU1qA3e2iCBQU9oN

Instagram: nsx_gms

Key terms

Acceleration
Aerobic
Anaerobic
Anaerobic capacity
Anaerobic speed reserve (ASR)
Anaerobic threshold

Key terms

Maximal aerobic speed (MAS) Maximal sprint speed (MSS) Maximum velocity (MV) Speed reserve ratio (SRR) Splits (10 m)
Velocity maintenance

Resources

Ascent Endurance x Top Flight Interview (part 1):

 https://youtu.be/txPMLhOicKQ?si=ck7G9J3Zoycrm3Sq
Speed 101

httos://youtu.be/AvsYacFIcjE?si=Azf 2OHC4kyW9wa5

References

Aguiar, R. de, Turnes, T., Cruz, R. de O., Salvador, A., \& Caputo, F. (2015). Repeated sprint performance and metabolic recovery curves: effects of aerobic and anaerobic characteristics. Applied Physiology, Nutrition \& Metabolism, 40(5), 433-440.

Bachero-Mena, B., Pareja-Blanco, F., Rodríguez-Rosell, D., Yáñez-García, J. M., MoraCustodio, R., \& González-Badillo, J. J. (2017). Relationships between sprint, jumping and strength abilities, and 800 m performance in male athletes of national and international levels. Journal of Human Kinetics, 58(1), 187-195.

Balasekaran, G., Loh, M., Boey, P., \& Ng, Y. (2023). Determination, measurement, and validation of maximal aerobic speed. Scientific Reports, 13(1), 1-10. https://doi-org.cucproxy.cuchicago.edu/10.1038/s41598-023-31904-1

References

Billat, L. V. (2001). Interval training for performance: A scientific and empirical practice: Special recommendations for middle- and long-distance running. Part II: Anaerobic interval training. Sports Medicine, 31(2), 75-90.

Haugen, T., Tonnessen, E., Leirstein, S., Hem, E., \& Seiler, S. (2014). Not quite so fast: effect of training at 90\% sprint speed on maximal and repeated-sprint ability in soccer players. Journal of Sports Sciences, 32(20), 1979-1986.

Haugen, T., Sandbakk, Ø., Enoksen, E., Seiler, S., \& Tønnessen, E. (2021). Crossing the golden training divide: The science and practice of training world-class $800-$ and $1500-\mathrm{m}$ runners. Sports Medicine, 51(9), 1835-1854.

References

Healy, R., Kenny, I. C., \& Harrison, A. J. (2022). Profiling elite male 100-m sprint performance:
The role of maximum velocity and relative acceleration. Journal of Sport \& Health Science, 11(1), 75-84.

Jones, R., Bezodis, I., \& Thompson, A. (2009). Coaching Sprinting: Expert Coaches' Perception of Race Phases and Technical Constructs. International Journal of Sports Science \& Coaching, 4(3), 385-396.

Julio, U., Panissa, V., Paludo, A., Alves, E., Campos, F., \& Franchini, E. (2020). Use of the anaerobic speed reserve to normalize the prescription of high-intensity interval exercise intensity. European Journal of Sport Science, 20(2), 166-173.

References

Sandford, G., Allen, S., Kilding, A., Ross, A., \& Laursen, P. (2019).
Anaerobic speed reserve: A key component of elite male 800-m running.
International Journal of Sports Physiology \& Performance, 14(4), 501-508.

Spencer, M., \& Gastin, P. (2001). Energy system contribution during 200- to 1500-m running in highly trained athletes. Medicine \& Science in Sports \& Exercise, 33(1), 157162.

Thompson, A., Bezodis, I., \& Jones, R. (2009). An in-depth assessment of expert sprint coaches' technical knowledge. Journal of Sports Sciences, 27(8), 855-861.

References

Waters, A., Phillips, E., Panchuk, D., \& Dawson, A. (2019). Coach and biomechanist experiential knowledge of maximum velocity sprinting technique. International Sport Coaching Journal, 6(2), 172-186.

Yu, J., Sun, Y., Yang, C., Wang, D., Yin, K., Herzog, W., \& Liu, Y. (2016). Biomechanical insights into differences between the mid-acceleration and maximum velocity phases of sprinting. Journal of Strength \& Conditioning Research, 30(7), 1906-1916.

