Maximal Sprinting for Middle/Long Distance Running

Ajamu Olaniyan Sports performance engineer

It does not matter if I can reach a higher VO2max in 5 minutes when I have to cross the finish line in 102 s

- Vebjørn Rodal (800 m Olympic champion, 1996)

Tony Holler is WRONG!

Keep distance coaches away from sprinters!

Sprint training and development is not based on or guided by sport science (Haugen et al., 2020)

There is a lack of evidence-based research identifying best practices for speed development

A chasm exists between empirical knowledge of speed development and experiential knowledge of coaches (Waters et al., 2019)

- Q12 What are your top training priorities for *developing* athletes? Rank in order of importance (1 = most important, 14 = least important)
- Q13 What are your top training priorities for *elite* athletes? Rank in order of importance (1 = most important, 14 = least important)

Training Priority	Rank
Arm positioning	
Bend Running	
Block Starts	
Endurance	
Footwork	
General strength conditioning	
Aerobic Fitness	
Max Velocity	
Posture	
Power	
Reaction time	
Skill specific conditioning	
Speed Endurance	
Strength	
Other	

Coaches **Developmental training** priorities: General strength conditioning Posture Footwork Skill specific conditioning Arm positioning

Coaches **Elite training priorities:** Maximum velocity/Skill specific **Maximum velocity** Skill specific conditioning Power **Reaction time**

Sport Mechanists **Developmental training** priorities: **Maximum velocity** Skill specific conditioning Posture **General strength** conditioning Arm positioning/Aerobic fitness

Sport Mechanists **Elite training priorities: Maximum velocity** Maximum velocity Posture Power **General Strength/Aerobic Fitness/Strength**

Dimensions of speed

Speed phases:

- Acceleration: 0 10 m
- Maximum velocity: 30 80 m

Maximum velocity is also the fastest 10 m split in the maximum velocity phase
 Elite sprinters attain MV later in the phase
 Velocity maintenance: after maximum velocity has been attained

Maximum velocity

Maximal sprint speed (MSS)

- 40 m up to 60 m
- Total distance time and 10 m splits (if possible)

Speed reserve is an athlete's efficiency while sprinting. The faster the athlete, the less effort needs to be expended to maintain maximum velocity (Crick, T., 2013).

1. Sprinting = acceleration, maximum velocity (MV), deceleration

- 2. MV exists in a 10 m window
- **3. Sprinting (maximum velocity) takes place between 30 60 m** 4. A 10 m fly with a 30 m fly start is an efficient means of measuring maximum velocity
- 5. If an athlete is not sprinting at 295% of MV, it's not sprinting
- 6. Electronic timing is accurate and precise
- 7. Apples to apples = meters to meters
- 8. Sprinting = Vertical application of maximal force in a downward direction
- 9. Low intensity training 48 hours before and after sprint efforts
- 10. Arms aren't as important as you think

Maximum velocity (MV) exists in a 10 m window

	AA			🔒 goog	gle.co.uk			د ا		C
🔀 📴 Build 🛿	Misconce	. 🧳 A-I	Pius Ac	🛜 Sprint	drill 🔯	Athing Mu.	🥃 UI	trasoun	🖬 Historia	al
0				simplifa	aster.com					Û
Table 7	. Usain Bol	t in Berlin	n, 2009.							
10-Mete	r Splits of	100-Mete	r Dash							
Scientific	Research l	Report iss	ued on 1	7.08.2009	at 8:00 p	m	_			
1.89	2.88	3.78	4.64	5.47	6.29	7.10	7.92	8.75	9.58	
							-			

Maximum velocity: 12.27 m/s at 65.03 m

Sprinting (maximum velocity) takes place between 30 - 60 m

	AA			🔒 goog	lle.co.uk			් ර		Ô
🔀 📰 Build 🛿	Misconce	🧃 A-I	Plus Ac	Sprint (drill 👿	Athing Mu.	🥃 Uli	trasoun	🖾 Historia	cal
0				simplifa	ster.com		1.1			Û
Table 7	. Usain Bolt	: in Berlin	n, 2009.							
10-Mete	r Splits of 1	00-Mete	r Dash							
Scientific	: Research F	Report iss	ued on 1	7.08.2009	at 8:00 pr	n				
1.89	2.88	3.78	4.64	5.47	6.29	7.10	7.92	8.75	9.58	
1.89	0.99	0.90	0.86	0.83	0.82	0.81	0.82	0.83	0.83	

Maximum velocity: 12.27 m/s at 65.03 m

If an athlete is not sprinting at 295% of MV, it's not sprinting

Sprinting intensity should be ≥ 95% of an athlete's maximum velocity for performance enhancement (Haugen, et al., 2020).

Key factors in running performance

Performance metrics: Speed Reserve Ratio (SRR): MSS/MAS Anaerobic Speed Reserve (ASR): MSS - MAS Maximal Aerobic Speed (MAS): 1,600 m (total distance time and 400 m splits) Maximal Sprinting Speed (MSS): 40 m (10 m split and total distance) Speed reserve ratio (SRR) Speed reserve ratio (SRR) Maximal sprint speed (MSS)/Maximal aerobic speed (MAS)

Aerobic/Anaerobic Contributions

800 m: 70/30% or 60/40%

1,500 m - Marathon: 75-85%/15-25%

Haugen et al. (2021)

Subgroups based on Speed Reserve Ratio (SSR)

400 - 800 m (speed): SRR: ≥ 1.58

800 m (specialist): SRR: ≤ 1.57 to ≥ 1.47

800 m - 1,500 m (endurance): SRR: ≤ 1.57 to ≥ 1.47

1,500 m - Marathon:

(Haugen et al., 2021; Sandford et al., 2019)

Anaerobic speed reserve (ASR) Anaerobic speed reserve (ASR) Maximal sprint speed (MSS) - maximal aerobic speed (MAS)

Maximal aerobic speed Maximal aerobic speed (MAS) Any distance used to represent VO_{2max} • 400 m on up (XC: 5K) Total distance time and splits (if possible)

Maximal sprint speed

Maximal sprint speed (MSS)

- 40 m up to 60 m
- Total distance time and 10 m splits (if possible)

Aerobic Contributions

• Middle distance

- 800 m: 65 75%
- 1,500 m: 80 85%
- Middle-long distance:
 - 3,000 m: 85 90%
 - 5,000 m: 90 97%
 - 10,000 m: 97%
- Long distance
 - Half marathon: 98%
 - Marathon: 99.9%

Aerobic Contributions

800 m: (60.3 ± 9)%
1,500 m: (77 ± 7)%
3,000 m: (86 ± 7)%

Duffield et al. (2005)

Aerobic Contributions

800 m: (66 ± 4)%
1,500 m: (84 ± 3)%

Spencer and Gastin (2001)

The role of maximal sprint speed in running performance

Assessing running speed helps determine race strategy, the quality of training programs, and provides insights to optimized training intensities and volumes in a training period

Riberio et al. (2020)

The role of maximal sprint speed in running performance

The ability to adapt and manage the acidification and development of a higher blood concentration of lactate without performance capacity diminishing is critical

Riberio et al. (2020)

The role of maximal sprint speed in running performance

A fast Maximal Sprinting Speed (MSS)determines the proportion of ASR an athlete can work at and may influence high intensity training tolerance

(Sandford et al., 2019)

Athlete	MV	Race PR
Al	1.14	18:59.0
A2	1.15	18:20.0
A3	1.17	18:35.2
A4	1.20	22:10.3
A5	1.21	19:11.6
A6	1.22	18:44.2
A7	1.23	18:20.0
A8	1.23	18:37.7
A9	1.24	18:57.1
A10	1.26	18:20.6
A11	1.26	21:17.0
A12	1.30	20:35.1

Athlete	MV	Race PR
A13	1.30	19:43.5
A14	1.31	23:46.5
A15	1.33	18:38.1
A16	1.35	20:10.8
A17	1.40	23:43.7
A18	1.42	23:53.5
A19	1.42	19:42.9
A20	1.44	21:40.0
A21	1.56	26:39.9
A22	1.61	23:00.0
A23	1.75	25:55.7
A24	1.83	25:37.1

	Maximum V	elocity (MV)	1,600 PR	MV	1,600 time	Speed Reserve Ratio (SRR)	
Athlete	Max	Ave		MSS m/s	MAS m/s	SRR = MSS/MAS	
A1	1.27	1.32	4:33	7.87	5.86	1.34	
A2	1.18	1.22	5:00	8.47	5.33	1.59	
A3	1.16	1.19					
A4	1.32	1.35					
A5	1.26	1.38					
A6	1.12	1.15	5:00	9.80	5.33	1.84	
A7	1.36	1.40	5:22	8.26	4.97	1.66	
A8	1.15	1.24	6:15	8.70	4.27	2.04	
A9	1.30	1.36					
A10	1.22	1.23					
A11	1.42	1.48					
A12	1.76	1.81					

Thomas 3	Breitbach
MSS (M	V in m/s)
1.19	8.4
MAS ((1,600)
4:19	259
1,600 in m/s	6.18
$\mathbf{SRR} = \mathbf{N}$	ISS/MAS
	1.36
ASR = N	ISS-MAS
	2.22

			Ben Stricker			
	MV	200 m	400 m	800 m	1600 m	3,200
2022 Track				2:10.85		10:00.14
2023 Track	1.09	26.09	55.28	2:03.12	4:26.57	9:43.74
	MV	5,000				
2022 XC	1.20	16:18.9				
2023 XC	1.09	16:06.3				

Maximum Velocity Top Performances

	Athlete	Time	Sport
	Gabriel Olsen		Track/Soccer
1	AC Zylka	0.95	Track
	Alexander Maggit		Track
2	Aidan Lynch	1.00	Track
3	Jacob Lorbecki	1.01	Soccer/Baseball
	Devin Frank		Track/Football
4	Lily Strong	1.02	Track
	Desmond Wilson		Track
5	Max McQuide	1.03	Track
	Matt Jelinski		Track
6	A. Groskopf	1.04	Track/Football
	Kieran Schindler		Track
7	Jetta Mays	1.05	Track
4	Sennet Siodlarz	1.05	Track/Football
8	Austin Villarreal	1.06	Track/Basketball
9	Nick Hansen	1.07	Football
10	Naomi Wilson	1.08	Track/Basketball
11	Andrew Kronenberg	1.00	Football
ш	Maia Mays	1.09	Track
	Maximum Velocity		
	10 m fly (30 m fly	start)	

Maximum Velocity Top Performances

Maximum Velocity	Performance			
Elite	< .90			
Excellent	.9990			
Very Good	1.09 - 1.00			
Above Average	1.19 - 1.10			
Average	1.29- 1.20			
Below Average	≥ 1.30			
Created by Nat Senior and Ajamu Olaniyan (topflightone.com)				

Maximum Velocity Top Performances

Max Velocity for Optimal 100m Performance (Min. values)

100m time	Max V (m/s)	Fastest 10m	Fly 30m (Fastest 30m segment)
9.40	12.55	0.80	2.41
9.50	12.50	0.80	2.42
9.58WR (Men)	12.50	0.80/0.81	2.43
9.60	12.19	0.82	2.47
9.70	12.05	0.83	2.51
9.80	11.92	0.84	2.54
9.90	11.78	0.85	2.57
10.00	11.64	0.86	2.60
10.10	11.51	0.87	2.62
10.20	11.37	0.88	2.66
10.30	11.24	0.89	2.69
10.40	11.10	0.90	2.72
10.49WR (Women)	11.23	0.89	2.69
10.50	10.97	0.91	2.75
10.60	10.83	0.92	2.78
10.70	10.70	0.93	2.81
10.80	10.59	0.94	2.84
10.90	10.47	0.95/0.96	2.87/2.90
11.00	10.35	0.96/0.97	2.90/2.94
11.10	10.25	0.97/0.98	2.94/2.96
11.20	10.12	0.99	2.99
11.30	10.03	0.99/1.00	2.99/3.02
11.40	9.89	1.01	3.04
11.50	9.76	1.02/1.03	3.08/3.11
11.60	9.65	1.03/1.04	3.11/3.14
11.70	9.53	1.05	3.17
11.80	9.41	1.06	3.19
11.90	9.30	1.07/1.08	3.23/3.26
12.00	9.20	1.08/1.09	3.26/3.30

Created by **Nat Senior** of NSX Performance <u>https://youtube.com/@nsxperform</u> <u>ance?si=DU1qA3e2jCBQU9oN</u>

Instagram: nsx_gms

Acceleration Aerobic Anaerobic Anaerobic capacity Anaerobic speed reserve (ASR) Anaerobic threshold

Key terms

Maximal aerobic speed (MAS) Maximal sprint speed (MSS) Maximum velocity (MV) Speed reserve ratio (SRR) Splits (10 m) Velocity maintenance

Ascent Endurance x Top Flight Interview (part 1): https://youtu.be/txPMLhOicKQ?si=ck7G9J3Zoycrm3Sq

Speed 101 https://youtu.be/AysYqcFIcjE?si=Azf_2OHC4kyW9wg5

Aguiar, R. de, Turnes, T., Cruz, R. de O., Salvador, A., & Caputo, F. (2015). Repeated

sprint performance and metabolic recovery curves: effects of aerobic and anaerobic characteristics. *Applied Physiology, Nutrition & Metabolism, 40*(5), 433–440.

Bachero-Mena, B., Pareja-Blanco, F., Rodríguez-Rosell, D., Yáñez-García, J. M., Mora-

Custodio, R., & González-Badillo, J. J. (2017). Relationships between sprint, jumping and strength abilities, and 800 m performance in male athletes of national and international levels. *Journal of Human Kinetics*, *58*(1), 187–195.

Balasekaran, G., Loh, M., Boey, P., & Ng, Y. (2023). Determination, measurement, and validation of maximal aerobic speed. *Scientific Reports*, *13*(1), 1–10. <u>https://doi-org.cucproxy.cuchicago.edu/10.1038/s41598-023-31904-1</u>

Billat, L. V. (2001). Interval training for performance: A scientific and empirical practice:

Special recommendations for middle- and long-distance running. Part II: Anaerobic interval training. *Sports Medicine*, *31*(2), 75–90.

Haugen, T., Tonnessen, E., Leirstein, S., Hem, E., & Seiler, S. (2014). Not quite so fast: effect of

training at 90% sprint speed on maximal and repeated-sprint ability in soccer

players. Journal of Sports Sciences, 32(20), 1979–1986.

Haugen, T., Sandbakk, Ø., Enoksen, E., Seiler, S., & Tønnessen, E. (2021). Crossing the golden training divide: The science and practice of training world-class 800- and 1500-m runners. *Sports Medicine*, *51*(9), 1835–1854.

References

Healy, R., Kenny, I. C., & Harrison, A. J. (2022). Profiling elite male 100-m sprint performance:

The role of maximum velocity and relative acceleration. *Journal of Sport & Health Science, 11*(1), 75–84.

Jones, R., Bezodis, I., & Thompson, A. (2009). Coaching Sprinting: Expert Coaches' Perception of Race
Phases and Technical Constructs. *International Journal of Sports Science & Coaching*, 4(3), 385–396.
Julio, U., Panissa, V., Paludo, A., Alves, E., Campos, F., & Franchini, E. (2020). Use of the
anaerobic speed reserve to normalize the prescription of high-intensity interval exercise

intensity. European Journal of Sport Science, 20(2), 166–173.

References

Sandford, G., Allen, S., Kilding, A., Ross, A., & Laursen, P. (2019).

Anaerobic speed reserve: A key component of elite male 800-m running.

International Journal of Sports Physiology & Performance,

14(4), 501–508.

Spencer, M., & Gastin, P. (2001). Energy system contribution during 200- to 1500-m running in highly trained athletes. *Medicine & Science in Sports & Exercise*, 33(1), 157– 162.

Thompson, A., Bezodis, I., & Jones, R. (2009). An in-depth assessment of expert sprint coaches' technical knowledge. Journal of Sports Sciences, 27(8), 855–861.

Waters, A., Phillips, E., Panchuk, D., & Dawson, A. (2019). Coach and biomechanist

experiential knowledge of maximum velocity sprinting technique. International

Sport Coaching Journal, 6(2), 172–186.

Yu, J., Sun, Y., Yang, C., Wang, D., Yin, K., Herzog, W., & Liu, Y. (2016). Biomechanical

insights into differences between the mid-acceleration and maximum velocity

phases of sprinting. Journal of Strength & Conditioning Research, 30(7), 1906–1916.